## Exercise 51

Let $B(t)$ be the number of US $\$ 20$ bills in circulation at time $t$. The table gives values of this function from 1990 to 2010, as of December 31, in billions. Interpret and estimate the value of $B^{\prime}(2000)$.

| $t$ | 1990 | 1995 | 2000 | 2005 | 2010 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $B(t)$ | 3.45 | 4.21 | 4.93 | 5.77 | 6.53 |

## Solution

$B^{\prime}(t)$ represents the rate that the number of US $\$ 20$ bills increases as $t$ increases. Its units are billions per year. To determine the best estimate for $B^{\prime}(t)$ at $t=2000$, calculate the slopes of the secant lines nearest to this time,

$$
\begin{aligned}
& m_{1}=\frac{P(2000)-P(1995)}{2000-1995}=\frac{4.93-4.21}{5}=0.144 \\
& m_{2}=\frac{P(2005)-P(2000)}{2005-2000}=\frac{5.77-4.93}{5}=0.168
\end{aligned}
$$

and take their average.

$$
B^{\prime}(2000) \approx \frac{m_{1}+m_{2}}{2}=0.156
$$

This means the number of US $\$ 20$ bills is increasing by $156,000,000$ per year on December 31, 2000.

